HARRIS-VIEHMANN CONJECTURE FOR HODGE-NEWTON
REDUCIBLE RAPOPORT-ZINK SPACES

SERIN HONG

ABSTRACT. Rapoport-Zink spaces, or more generally local Shimura varieties, are ex-
pected to provide geometric realization of local Langlands correspondences via their
l-adic cohomology. Along this line is a conjecture by Harris and Viehmann, which
roughly says that when the underlying local Shimura datum is not basic, the [-adic
cohomology of the local Shimura variety is parabolically induced.

We verify this conjecture for Rapoport-Zink spaces which are Hodge type and
Hodge-Newton reducible. The main strategy is to embed such a Rapoport-Zink space
into an appropriate space of EL type, for which the conjecture is already known to
hold by the work of Mantovan.
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1. INTRODUCTION

In [RZ96], Rapoport and Zink constructed formal moduli spaces of p-divisible groups
which give rise to local analogues of PEL type Shimura varieties. These spaces, which
are now called Rapoport-Zink spaces, have played a crucial role in the study of local
Langlands correspondences. Perhaps the most striking example is Harris and Taylor’s
proof in [HT01] of the local Langlands conjecture for GL,,. A key point of their proof
is that one can realize the local Langlands correspondence in the /-adic cohomology of
Lubin-Tate spaces, which are Rapoport-Zink spaces that parametrize p-divisible groups
of dimension 1.

The theory of Rapoport-Zink spaces suggests that it should be possible to realize
many cases of local Langlands correspondence via the [-adic cohomology of some lo-
cal analogues of Shimura varieties. Motivated by this, Rapoport and Viehmann in
[RV14] formulated the idea that there should exist a general theory of local analogues
of Shimura varieties, which they called local Shimura varieties. They described a con-
jectural form of this theory which starts with a group theoretic datum called a local
Shimura datum and associates to this datum a tower of analytic spaces which enjoys
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analogous properties to the properties of Shimura varieties. Shortly after this conjec-
tural formulation, Scholze in his Berkeley lectures [Sch14] gave a construction of local
Shimura varieties in some perfectoid category which he called the category of diamonds.
For local Shimura data that arise from Shimura varieties of Hodge type, W. Kim in
[Kim13] constructed Hodge type Rapoport-Zink spaces which may serve as integral
models of the corresponding local Shimura varieties.

There are two key cohomology conjectures, namely the Kottwitz conjecture and the
Harris-Viehmann conjecture, which predicts how the [-adic cohomology of local Shimura
varieties should realize local Langlands correspondence. The Kottwitz conjecture, orig-
inally formulated by Kottwitz and introduced by Rapoport in [Rap94], concerns real-
ization of supercuspidal representations when the underlying local Shimura datum is
basic. The Harris-Viehmann conjecture, originally formulated by Harris in [Har00] and
later modified by Viehmann, gives an inductive formula for the cohomology when the
underlying local Shimura datum is not basic.

The primary purpose of this paper is to prove the Harris-Viehmann conjecture for
certain local Shimura data that arise from Shimura varieties of Hodge type. We will
work in the setting of Rapoport-Zink spaces, as our proof will use previously known
results for Rapoport-Zink spaces of PEL type. However, our argument should work as
well in the setting of local Shimura varieties constructed by Scholze.

Let us now introduce the notations and terminologies necessary for a precise state-
ment of our result. We fix a prime p > 2, and set up some standard notations as follows:
we write F, and @, respectively for a fixed algebraic closure of F,, and Q,; Q™ for the
maximal unramified extension of Q,; C, and @p respectively for the p-adic completion
of @p and Q"; and Zp for the ring of integers of Qp. We also fix an unramified local
Shimura datum of Hodge type, which is a tuple (G, [b],{x}) consisting of a connected
reductive group G over Z,, a o-conjugacy class [b] of elements in G(Q,), and a G(Z,)-
conjugacy class {1} of cocharacters of G satisfying certain axioms (see 3.1.1 for details).
Let E denote the field of definition of {x}, which is an unramified finite extension of
Q,. With a suitable choice of b € [b], the datum (G, [b], {t}) gives rise to a p-divisible
group X over F, with some additional structures induced by the group G. Let J, be
an algebraic group over QQ, with functor of points

Jo(R) = {g € G(R©qg, Q) : gbo(g)™" = b}
for any @Q,-algebra R.
To the pair (G, b), we associate a Rapoport-Zink space of Hodge type RZq followiung
W. Kim’s construction in [Kim13]. The space RZ¢, is a formal scheme over Spf (Z,)

whose isomorphism class depends only on the datum (G, [b], {u}). It also has a rigid
analytic generic fiber RZrGl%b which is equipped with a tower of étale covers RZ7Z, :=

{Rzgﬁ)} where K, runs over open compact subgroups of G(Z,). The [-adic cohomology
groups

H'(RZg%) == Hi(RZgh, @5 Cp Qi(dimRZgH))  for i > 0
fit into a tower {Hi(Rng’b)} with a natural action of G(Q,) x Wg x J,(Q,) where Wg
is the Weil group of E. For an [-adic admissible representation p of J,(Q,), we define
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a virtual representation of G(Q,) x Wg

H*(RZZ), = Y (=) lim Ext), o (H'(RZg,), p)-
1,520 Kp

We prove the Harris-Viehmann conjecture under the assumption that the datum
(G, [b],{p}) is Hodge-Newton reducible. Roughly speaking, this means that the datum
(G, [b],{u}) naturally reduces to a local Shimura datum for some Levi subgroup L of
G. More precisely, there exists a choice of b € [b] N L(Qp) and p € {p} which factors
through L such that the tuple (L, [b], {¢}) is an unramified local Shimura datum of
Hodge type (see 4.1.4 for details).

Now we can state our main result as follows:

Theorem. Assume that the unramified local Shimura datum of Hodge type (G, [b], {p})
1s Hodge-Newton reducible with respect to a parabolic subgroup P of G with Levi factor
L. Choose b € [b] ﬂL(@p) which gives rise to a p-divisible group over F, with additional
structures induced by L. For any admissible Q,-representation p of J,(Q,), we have the
following equality of virtual representations of G(Q,) x Wg:

H*(RZg,), = ]ndJGDEgZ;H.(RZEb)p'

In particular, the virtual representation H®*(RZg,), contains no supercuspidal represen-
tations of G(Q,).

Let us record some previously known results on the Harris-Viehmann conjecture. The
carliest result of this form is Boyer’s work in [Boy99] for Drinfeld’s modular varieties.
For Rapoport-Zink spaces of PEL type, Mantovan in [Man08] and Shen in [Sh13] ver-
ified the conjecture assuming Hodge-Newton reducibility. For local Shimura varieties
constructed by Scholze, Hansen in [Hanl6| proves the conjecture for G = GL,, also
under the Hodge-Newton reducibility assumption.

We now briefly sketch our proof of the theorem. Our overall strategy is to prove
that the rigid analytic generic fiber of the space RZq, is “parabolically induced” from
the rigid analytic generic fiber of RZ ;. More precisely, we will construct an analogue
of Rapoport-Zink space RZp; associated to the parabolic subgroup P and prove the
following lemma:

Lemma. The rigid analytic generic fibers of RZqy, RZpy, and RZyy, fit into a diagram

RZp,

ZERN

RZ}, RZ,

)

such that
(i) s is a closed immersion,
(i) m is a fibration in balls,
(iii) 7 is an isomorphism.
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After establishing this lemma, we deduce the theorem by comparing the cohomology
of the spaces RZr;, and RZq, with the cohomology of RZpy,.

This strategy originated in Mantovan’s proof in [Man08], and also appeared in the
work of Shen in [Sh13] and Hansen in [Han16]. However, details of our argument will
be different from those in the aforementioned works.

The main ingredient of our argument is the notion of EL realization developed by
the author in [Hong18]. An EL realization of the datum (G, [b], {¢}) is an embedding of
(G, [b], {n}) into a local Shimura datum of EL type (G, [b], {x}) which is Hodge-Newton
reducible with respect to a parabolic subgroup P of é with Levi factor L such that
P=PnGand L=LNG. By functoriality of Hodge type Rapoport-Zink spaces, an
EL realization of (G, [b], {i}) induces a closed embedding

RZG,b — R'Zél’ .

Over the EL type Rapoport-Zink space RZé »» Mantovan constructed an analogue of

Rapoport-Zink space RZ 3z By associated to P. We will use the results from [Hong18] to
prove that the pull back of RZg, over RZ¢ is the desired space RZp;, that yields the
diagram in the lemma.

We now give an overview of the structure of this paper. In section 2, we introduce
general notations and recall some group theoretic preliminaries. In section 3, we review
W. Kim’s construction of Rapoport-Zink spaces of Hodge type. In section 4, we state
and prove our main theorem.

Acknowledgments. I would like to express my deepest gratitude to Elena Mantovan.
This study would have never been possible without her previous work for EL/PEL cases
and her numerous helpful suggestions.

2. NOTATIONS AND PRELIMINARIES

2.1. General notations.

Throughout this paper, we use the following standard notations:

° E; is a fixed algebraic closure of [F);

e Q, is a fixed algebraic closure of Qy;

e Q" is the maximal unramified extension of Q, in Q,;
e C, is the p-adic completion of @p,

° Qp is the p-adic completion of Q)"

° Z is the ring of integers of (@p

In addition, we denote by ¢ the Frobenius automorphism of Fp and also its lift to Zp
and @p.

Given a Noetherian ring R and a free R-module A, we denote by A® the direct sum
of all the R-modules which can be formed from A using the operations of taking duals,

tensor products, symmetric powers and exterior powers. An element of A® is called
a tensor over A. Note that there is a natural identification A® ~ (A*)® where A* is
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the dual R-module of A. Any isomorphism A = A’ of free R-modules of finite rank
naturally induces an isomorphism A® = (A’)®.

For a p-divisible group X over a Z,-scheme S, we write D(X) for its (contravariant)
Dieudonné module and Fil'(D(X)) C D(X)g for its Hodge filtration. We generally
denote by F' the Frobenius map on D(X).

2.2. Group theoretic preliminaries.

2.2.1. Let G be a connected reductive group over Z,. We write Rep; (G) for the
category of finite rank G-representations over Z,, and Repg, (G) for the category of
finite dimensional Gg,-representations over Q.

Let R be a Z,-algebra, and let A : G,, — G be a cocharacter. We denote by {A}¢q,
or usually by {\} if there is no risk of confusion, the G(R)-conjugacy class of A\. When
R = Z,, we have a bijection

Homy, (G, Gy, )/G(Zy,) = Homg (G, G )/G(Q,) — G(Z,)\G(Qy)/G(Z,)

induced by {A\} = G(Z,)A\(p)G(Z,); in fact, the first bijection comes from the fact that
G is split over Z,, whereas the second bijection is the Cartan decomposition.

Let A € Repg (G) be a faithful G-representation over Z,. By [Kil0], Proposition
1.3.2, we can choose a finite family of tensors (s;);er on A such that G is the pointwise
stabilizer of the s;; i.e., for any Z,-algebra R we have

G(R)={g € GL(A®z, R) : g(s;® 1) = s; ® 1 for all i € T}.
We say that a grading gr*(Ag) is induced by A if the following conditions are satisfied:

(i) the G,,-action on Ag via A leaves each grading stable,
(ii) the resulting G,,-action on gr'(Ag) is given by

Gm Z'—)Zﬁi/ Gm zrzeid GL(grz(AR»

Let S be an R-scheme, and & a vector bundle on S. For a finite family of global
sections (t;) of &%, we define the following scheme over S

Py := Isomo, ([@ﬂ, ()], [A ®r Og, (s; ® 1)]).

In other words, Py classifies isomorphisms of vector bundles & = A ® g Og which match
(t;) and (s; ® 1),

Let Fil*(&) be a filtration of &. When Pg is a trivial G-torsor, we say that Fil*(&)
is a {A}-filtration with respect to (¢;) if there exists an isomorphism & = A ®p Og,
matching (¢;) and (1 ® s;), which takes Fil*(&) to a filtration of A ® g Og induced by
g\g~! for some g € G(R). More generally, when Pg a G-torsor, we say that Fil*(&) is
a {A}-filtration with respect to (¢;) if it is étale-locally a {A}-filtration.
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2.2.2. We say that b,V € G(@p) are o-conjugate if b = gbo(g)~* for some g € G(Qp).
We denote by B(G) the set of all o-conjugacy classes in G(Q,). We write [b]¢, or simply

9]

[b] when there is no risk of confusion, for the o-conjugacy class of b € G(Q,).

Let us now fix a o-conjugacy class [b] in B(G) and choose an element b € [b]. We
define a group valued functor J, on the category of Q,-algebras by setting for any
Q,-algebra R

Jo(R) == {g € G(R®q, Q) : gbo(g)~" =b}.

This functor is represented by an algebraic group over @, which is an inner form of
some Levi subgroup of Gg, (see [RZ96], Corollary 1.14.). The isomorphism class of Jj,

does not depend on the choice b € [b] since any g € G(Qp) induces an isomorphism
Jy = Jgpo(g)-1 Via conjugation.

By an F-isocrystal over Fp, we mean a vector space over @p equipped with a o-linear
automorphism F. Given a Gg,-representation p : Gg, — GL(V) over Q,, we set

Ny(p) to be the @p—vector space V ®q, Q, with F = p(b) o (1 ® ¢). Then N, defines a
functor from Repr(G) to the category of F-isocrystals over Fp. One easily checks that
another choice b € [b] gives an isomorphic functor Ny.

3. RAPOPORT-ZINK SPACES OF HODGE TYPE

In this section, we discuss the construction and key properties of Rapoport-Zink
spaces of Hodge type, following [Kim13].

3.1. Construction.

3.1.1. An unramified local Shimura datum of Hodge type is a tuple (G, [b],{p}) where

e (5 is a connected reductive group over Zy;
e [b] is a o-conjugacy class of G(Q));
e {i} is a G(Z,)-conjugacy class of cocharacters of G,

which satisfy the following conditions:

(1) {} is minuscule,
(ii) [b] NG(Z,)p(p)G(Z,) is not empty for some (and hence for all) p € {u},
(iii) there exists a faithful G-representation A € Repy (G) (with its dual A*) such

that, for some b € [b] N G(Zy)u(p)G(Zy), we have a Z,-lattice
M = A* Rz, Zp C Nb(A* Xz, @p)
with the property pM C FM C M.

Note that the set G(Z,)u(p)G(Z,) is independent of the choice p € {u} as explained
in 2.2.1

Condition (iii) implies that for all b € [b] N G(Zy)u(p)G(Z,), we can find a Z,-lattice
M =\ ®z, Zp C Ny(A* ®7, Qp)
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with the property pM C FM C M. In fact, existence of M is equivalent to the
condition that the linearization of F' has an integer matrix representation with respect
to some basis, which depends only on [b].

Let us explain how the above definition is related to the definition of local Shimura
data given by Rapoport and Viehmann in [RV14], Definition 5.1. Since G is split over
Zp, we may regard {u} as a geometric conjugacy class of cocharacters of G. Then by
the work of Kottwitz-Rapoport [KR03], Lucarelli [Lu04] and Gashi [Gal0], we can state
the condition (ii) as [b] € B(Gg,, {1t}) where B(Gg,, {jt}) is the Kottwitz set defined in
[Ko97]. Hence the tuple (Gg,, [b], {1}) is a local Shimura datum as defined in [RV14],
Definition 5.1.

Lemma 3.1.2. Let (G, [b],{p}) be an unramified local Shimura datum of Hodge type.

(1) For any unramified local Shimura datum of Hodge type (G', [V'],{1'}), the tuple
(GxG',[b,V],{p, 1'}) is also an unramified local Shimura datum of Hodge type.

(2) For any homomorphism f: G — G’ of connected reductive group over Z,, the
tuple (G',[f()],{f o u}) is an unramified local Shimura datum of Hodge type.

Proof. This is an easy consequence of definition. O

3.1.3. For the rest of this section, we fix our unramified local Shimura datum of Hodge
type (G, [b], {u}) and also a faithful G-representation A € Repy (&) in the condition
(iii) of 3.1.1. By Lemma 3.1.2, we obtain a morphism of unramified local Shimura data

of Hodge type
(G, [b], {n}) — (GL(A), [Dlary, {nterm))-

Let us now choose an element b € [b] N G(Z,)u(p)G(Z,) and take M = A* Rz, Z,
as in the condition (iii) of 3.1.1. We also choose a finite family of tensors (s;);c; on
A as in 2.2.1. Then M = A* ®g, Z, is equipped with tensors (t;) := (s; ® 1), which
are F-invariant since the linearization of F' on M[1/p] = Ny(A* ®z, Q) is given by
be G(Q,).

Take X to be a p-divisible group over F,, with D(X) = M. Then the Hodge filtration
Fil'(D(X)) € D(X) is a {o~' (") }-filtration with respect to (¢;) (see [Kim13], Lemma
2.5.7 and Remark 2.5.8.). We may regard the tensors (¢;) as additional structures on
X induced by the group G. We will often refer to these additional structures as G-
structure on X. We will write X := (X, (;)) to indicate the p-divisible group X with
G-structure.

3.1.4. Let Nilpzp denote the category of Zp—algebra where p is nilpotent. For any
R € Nilp; we set RZ,(R) to be the set of isomorphism classes of pairs (X, ) where
e X is a p-divisible group over R,
o 1 : Xp/, — Xryp is a quasi-isogeny, i.e., an invertible global section of
HOHI(XR/p, XR/p) ®7 Q.
Then RZ, defines a covariant set-valued functor on Nilpr, which does not depend on

the choice of b € [b]NG(Z,)u(p)G(Z,) up to isomorphism. Rapoport and Zink in [RZ96]
proved that the functor RZ, is represented by a formal scheme which is locally formally
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of finite type and formally smooth over Zp. We write RZ, also for the representing
formal scheme, and X, for the universal p-divisible group over RZ,.

3.1.5. Given a pair (&, 1) € RZy(R) with R € Nilp; , we have an isomorphism

D(¢) : D(Xryp)[1/p] — D(Xryp)[L/p)
induced by . We write (tyx;) for the inverse image of the tensors (¢;)g under this

isomorphism.

Let Nilp3™ denote the full subcategory of Nilpzp consisting of formally smooth and

formally finitely generated algebra over Zp /p™ for some positive integer m. For any
R € Nilp3”, we define the set RZ(GSg (R) C Homy (Spf (R),RZ,) as follows: for a
morphism JIE : Spf (R) — RZ, and a p-divisible group X’ over Spec(R) which pulls back
to f*XgLp over Spf (R), we have f € RZng(R) if and only if there exists a (unique)
family of tensors (t;) on D(X) with the following properties:

(i) for some ideal of definition J of R containing p, the pull-back of (t;) over R/.J

agrees with the pull-back of (ty;) over R/J,
(ii) for a p-adic lift R of R which is formally smooth over Zp, the R-scheme

P = IsomR<[]D>(X)R, (t)r], [\ ®z, R, (s ® 1)])

defined as in 2.2.1 is a G-torsor,
(iii) the Hodge filtration of X is a {o~!(u~1)}-filtration with respect to (t;).

Then RZ(G‘”b) defines a set-valued functor on Nilp3™.
’ P

3.1.6. Let us give a concrete description of the set RZSjb) (F,). Consider a pair (X,¢) €

RZy(F,) with a family of tensors (t;) on D(X). Then (t;) has the property (i) of 3.1.5
if and only if it is matched with the family (¢;) under the isomorphism

D(x) : D(X)[1/p] — D(X)[1/p]
induced by ¢. In addition, it satisfies the properties (ii) and (iii) of 3.1.5 if and only if

(X, (t;)) is a p-divisible group with G-structure that arises from the datum (G, [b], {u}).
Hence the set Rng) (F,) classifies the isomorphism classes of tuples (X, (t;),¢) where

e (X, (t;)) is a p-divisible group over F, with G-structure;
e . : X — X is a quasi-isogeny such that the induced isomorphism D(X)[1/p] —
D(X)[1/p] matches (t;) with (¢;).
Proposition 3.1.7 ([Kim13], Theorem 4.9.1.). Assume that p > 2. Then there exists a
closed formal subscheme RZ¢q, C RZ,, which is formally smooth over Z, and represents

the functor RZ(GSZb) for any choice of the tensors (s;) in 3.1.3. Moreover, the isomorphism
class of the formal scheme RZg,, depends only on the datum (G, [b], {u}).

We let X denote the “universal p-divisible group” over RZ¢, obtained by taking
the pull-back of Xgr,5. Then we obtain a family of “universal tensors” (t!™V) on D(Xg)
by applying the universal property to an open affine covering of RZ¢ .



HARRIS-VIEHMANN CONJECTURE FOR HN-REDUCIBLE RAPOPORT-ZINK SPACES 9

Example 3.1.8. Consider the case G = Resgz, GL,, where &' is the ring of integers of
some finite unramified extension of Q,. In this case, choosing a family of tensors (s;)
on A as in 3.1.3 is equivalent to choosing a Z,-basis of &'. Then the family of tensors
(t;) encodes an action of & on M and thus on X. Hence X = (X, (¢;)) can be identified
with a p-divisible group X with an action of &.

In this setting, the construction of RZ¢ agrees with the construction of Rapoport-
Zink spaces of EL type in [RZ96] (see [Kim13], Proposition 4.7.1.). In other words, for
any R € Nilp; the set RZ¢ ;(R) classifies the isomorphism classes of pairs (X', ) where

e X is a p-divisible group over R, endowed with an action of & such that
det g(a, Lie(X)) = det(a, FilO(ID)(X))@p) foralla € O,

o 1 : Xp/, — Xgyp is a quasi-isogeny which commutes with the action of .

3.2. Functorial properties.
For the rest of this section, we assume that p > 2 and take RZs; as in Proposition
3.1.7.

Proposition 3.2.1 ([Kim13], Theorem 4.9.1.). Let (G', [b'], {i'}) be another unramified
local Shimura datum of Hodge type, and choose b’ € [V'| N G(Z,)i/' (p)G(Z,) that gives
rise to a p-divisible group over F, with G'-structure as in 3.1.3.

(1) The natural morphism RZ, X suf (2) Bl — R ), defined by the product of
p-divisible groups with quasi-isogeny, induces an isomorphism

RZap X g5 (7,) By — RZgxcr (b)

(2) For any homomorphism f : G — G’ with f(b) = U, there exists an induced
morphism

RZG’b — RZG/’b/,

which is a closed embedding if f is a closed embedding.

3.2.2. We want to describe the functorial properties in Proposition 3.2.1 on the set of
[F)-valued points. For this, we introduce the set

X0 ([b) = {g € G(Q,)/G(Z,)gbo(9) ™" € G(Z,)u(p)G(Zy)}

which is clearly independent of our choice of b € [b] up to bijection. The set X g}([b]) is
called the affine Deligne-Lusztig set associated to the datum (G, [b], {u}). As explained
in [Kim13], 4.8, we have a natural bijection

XGy(10]) = RZg(F,).

Let us now consider another unramified local Shimura datum (G, [b], {¢'}) and

choose U/ € [I'] N G(Z,)i/(p)G(Z,) as in Proposition 3.2.1. Then on the set of F,-
valued points, the morphism in (1) of Proposition 3.2.1 gives a map

Xy ([0]) x XE () = XG0 (10, 6])

{m,n"}
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which maps (gG(Zp),g’G’(Zp)) to (g9,9")(G x G’)(Zp). For any homomorphism f :
G — G’ with f(b) =¥, the morphism in (2) of Proposition 3.2.1 yields a map

XOA () — X o (FO))
which maps gG(Zp) to f(g)G’(Zp).

3.2.3. We now describe the functorial properties in Proposition 3.2.1 on the formal com-
pletions at an [F,-valued point. Let x be a point in RZ¢ ,(F,), and write (X, (t4.i), ta)

for the corresponding tuple under the description of RZg 4 (F,) in 3.1.6. We denote by

—

(RZ¢ ), the formal completion of RZg at .

For an artinian local Zp—algebra R with residue field Fp, we define a deformation of
X, over R to be a p-divisible group 2, over R with an isomorphism %, ®gr Fp =~ X,.
By Faltings in [Fal99], §7, there exists a formal scheme Defy, ¢ over Spf (Z,) which
classifies the deformations of X, with Tate tensors in the following sense: for a Zp—
algebra of the form R = Zy[[uy,--- ,un]] or R = Zy|[uy,--- ,un]]/(p™), Defx, (R) is
the set of isomorphism classes of the pair (£, (t;)) where

e 2. is a deformation of X, over R;
e (t;) is a family of Frobenius-invariant tensors on D(.%2) which lift the tensors
(t;) and lie in the Oth filtration with respect to the Hodge filtration.

From this moduli description, we obtain a natural isomorphism

L —

DefX%G ~ (RZG,b)m
as explained in [Kim13], 4.8.

Now consider another unramified local Shimura datum (G, [b'], {¢'}) and choose
v €[] NG(Z,)i (p)G(Z,) as in Proposition 3.2.1. For any point @’ € RZ¢ v (F,), the
morphism in (1) of Proposition 3.2.1 induces an isomorphism

Defx, ¢ x Defx , v — Defx, «x,, axcr

defined by the product of deformations. For any homomorphism f : G — G’ with

f(b) =V, if we take 2’ € RZ¢ y(IF,) to be the image of x under the morphism in (2) of
Proposition 3.2.1, we have an induced morphism

DefXI,G — Defxw/,(;/

which is a closed embedding if f is a closed embedding.
3.3. Associated local Shimura varieties.

3.3.1. Consider the algebraic group Jj, over Q, defined in 2.2.2. Note that J,(Q,) can
be identified with the group of quasi-isogenies v : X — X that preserve the tensors
(t;). One can show that RZ¢, carries a natural left J,(Q,)-action defined by

(X, 0) = (X077
for any R € Nilpzp, (X,1) € RZgp(R) and v € J,(Q,) (see [Kim13], 7.2.).
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3.3.2. Let E be the field of definition of the G(@p)—conjugacy class of u, and let Of
denote its ring of integers. Note that E' is a finite unramified extension of Q, since Gq,
is split over a finite unramified extension of Q,. Let d be the degree of the extension,

and write 7 for the Frobenius automorphism of @p relative to F.
For any formal scheme S over Spf (Zp), we write ST = S Xg (F)r Spf (Zp). By

a Weil descent datum on S over O, we mean an isomorphism S — S7. If § =
So Xspt (0) SPf (Zy) for some formal scheme Sy over Spf (Of), then there exists a
natural Weil descent datum on S over O, called an effective Weil descent datum.

For any R € Nilpzp, we define R™ to be R viewed as a Zp—algebra via 7. Note
that we have a natural identification RZ;(R) = RZ,(R"). Following Rapoport and
Zink in [RZ96], 3.48, we define a Weil descent datum ® on RZ, over O by sending
(X,) € RZy(R) with R € Nilp;  to (X?,1?) € RZy(R™) where

o X% is X viewed as a p-divisible group over R";
e (? is the quasi-isogeny

d * Frob—¢ L P
L .XRr/pI(T X)R/p—>XR/p—>XR/p: R/p

where Frob? : X — 7*X is the relative ¢-Frobenius with ¢ = p®.

One can check that ® restricts to a Weil descent datum ®; on RZ¢, over O by looking
at IF,-points and the formal completions thereof. The Weil descent datum ®¢ clearly
commutes with the J,(Q,)-action defined in 3.3.1.

3.3.3. Since RZgy is locally formally of finite type over Spf (Zp), it admits a rigid
analytic generic fiber which we denote by RZ:, (see [Bert96].). The J,(Q,)-action and

the Weil descent datum @ on RZq ), induce an action of J,(Q,) on RZrGigfb and an Weil

descent datum @ : RZ?fb o (RZg%b)T over E.

Recall that we have a universal p-divisible group X, over RZ¢ and a family of uni-
versal tensors (t]™) on D(Xg ;). In addition, the family (t™V) has a “étale realization”
(t22) on the Tate module 7,(Xg;) (see [Kim13], Theorem 7.1.6.).

7,6t
For any open compact subgroup K, of G(Z,), we define the following rigid analytic
étale cover of RZ::

REZg = Tsompe (A, (50)), [Ty (Xa), (615)]) /K.

The J,(Q,)-action and the Weil descent datum over E on RZrGi%b pull back to Rzgfb. As

the level K, varies, these covers form a tower {RZ[G(f’b} with Galois group G(Z,). We
denote this tower by RZz .

By [Kim13], Proposition 7.4.8, there exists a right G(Q,)-action on the tower RZ,
extending the Galois action of G(Z,), which commutes with the natural .J,(Q,)-action
and the Weil descent datum over E. In addition, there is a well-defined period map on
RZlgfb as explained in [Kim13], 7.5. Hence the tower RZg, is a local Shimura variety
in the sense of Rapoport and Viehmann in [RV14], 5.1.
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3.3.4. We fix a prime [ # p, and let Wy denote the Weil group of E. For any level
K, C G(Z,), we consider the cohomology groups

H'(RZg}) = HARZG, @y Cp Qu(dimRZGH)).

As the level K, varies, these cohomology groups form a tower {H Z(Rzg‘}])} for each i,
endowed with a natural action of G(Q,) x Wg x J,(Q,).

Let p be an admissible l-adic representation of .J,(Q,). The groups
i,j i Ky
HY (RZg), - lﬂEXtJ @) (H'(RZg4), p)

satisfy the following properties (see [RVM], Proposition 6.1 and [Man08], Theorem 8):

(1) The groups H*(RZg,), vanish for almost all 7, .
(2) There is a natural action of G(Q,) x W on each H"(RZE,),-
(3) The representations H*/(RZg,), are admissible.

Hence we can define a virtual representation of G(Q,) x Wg

H*(RZZy), = Y (1) HY(RZ,),.

1,j=>0
4. HODGE-NEWTON REDUCIBILITY AND HARRIS-VIEHMANN CONJECTURE
4.1. Harris-Viehmann conjecture: statement.

4.1.1. Throughout this section, we fix a prime p > 2 and an unramified local Shimura
datum of Hodge type (G, [b],{u}). We also choose a faithful G-representation A €
Repy, (G) and a finite family of tensors (s;) on A as in 3.1.3. In addition, we fix a
maximal torus 7" C G and a Borel subgroup B C G containing 7', both defined over
7

»-
Let P be a proper standard parabolic subgroup of G with Levi factor L and unipotent
radical U. For any element b € [b] N L(Q,), we define I, 1,1 1, to be the set of L(Z,)-

conjugacy classes of cocharacters of L with a representative p' such that
(i) u' €{ute, ]
(ii) [b]r N L(Z,)p' (p)L(Z,) is not empty.

Then I g,3,1. is finite and nonempty (see [RV14], Lemma 8.1.).

Lemma 4.1.2. For any {§'}1, € Iy 1,1, the tuple (L, [b], {i'}1) is an unramified local
Shimura datum of Hodge type.

Proof. By construction, the tuple (L, [b]., {i/}1) satisfies the conditions (i) and (ii) of
3.1.1. Hence it remains to check the condition (iii) of 3.1.1. After taking o-conjugate
in L(Q,) if necessary, we may assume that b € L(Z,)u'(p)L(Z,). Then we have
b € G(Z,)(p)G(Z,) since p' € {u}. Now we verify the condition (iii) with b since
(G, [b],{n}) is an unramified local Shimura datum of Hodge type. O

We can now state the Harris-Viehmann conjecture in the setting of Rapoport-Zink
spaces of Hodge type.
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Conjecture 4.1.3 ([RV14], Conjecture 8.4.). Choose an element b € [BJNG(Z,)u(p)G(Zy).
Let P be a parabolic subgroup of G with Levi factor L such that

(i) [b] N L(Q,) is not empty,
(ii) Jy is an inner form of a Levi subgroup of G contained in L.

Choose representatives fiy, lo, - - - , jts of the L(Zp)—conjugacy classes of cocharacters in
Iy ¢y, and also choose by, € [b]y, N L(Zy) i (p)L(Zy) for each k =1,2,---,s. Then for
any admissible Q,-representation p of J(Q,), we have an equality of virtual representa-

tions of G(Q,) x Wg

@ [n QP)H. ZO(?bk)p'

In particular, the virtual representation H'(RZZi’b)p contains no supercuspidal represen-

tations of G(Q,).

Here we consider the groups H*(RZ7, ), as a virtual representation of P(Q,) x Wg
by letting the unipotent radical of P(Q,) act trivially. Note that the choice of b;’s (or
px’s) is unimportant since the isomorphism class of the spaces RZ7, only depend on

the tuples (L, [b]r, {pu}r)-

4.1.4. We will prove Conjecture 4.1.3 under the assumption that the datum (G, [b], {p})
is Hodge-Newton reducible (with respect to P and L). By definition, this means that

there exist p € {u} and b € [b] N L(Q,) with the following properties:

(i) the cocharacter u factors through L,
(ii) [b]r N L(Z,)p(p)L(Z,) is not empty, )
(iii) in the action of y and v, on Lie(U) ®q, Q,, only non-negative characters occur.

Here v, denote the Newton cocharacter associated to b (see [Ko85], §4 or [RR96], §1 for
definition.). Note that the properties (i) and (ii) together imply that {u}r € I (.1

The notion of Hodge-Newton reducibility first appeared in [Ka79], where Katz con-
sidered p-divisible groups (and F-crystals) with the property that the Hodge polygon
passes through a break point of the Newton polygon. For G = GL,, our notion of
Hodge-Newton reducibility is equivalent to the notion considered by Katz. More pre-
cisely, if X is a p-divisible group over [, that arises from the datum (G, [b], {u}) with a
choice of b € [b] N G(Z,)u(p)G(Zy), the datum (G, [b], {u}) is Hodge-Newton reducible
(with respect to some parabolic subgroup and its Levi factor) if and only if the Hodge
polygon of X passes through a break point of the Newton polygon of X. See [RV14],
Remark 4.25 for more details.

We want to interpret the statement of Conjecture 4.1.3 under our assumption. Let
us choose pu € {u} and b € [b] N L(Q,) with the properties (i), (ii), and (iii) above.
After replacing by a o-conjugate if necessary, we may assume that b € L(Zp) u(p)L(Zp).
Then b and L clearly satisfy the condition (i) of Conjecture 4.1.3. One can also check
that b and L satisfy the condition (ii) of Conjecture 4.1.3 (see [RV14], Remark 8.9.).
Moreover, under our assumption the set I, ;1 1 consists of a single element, namely

{1} (see [RV14], Theorem 8.8.).
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Hence we may state our main theorem as follows:
Theorem 4.1.5. Assume that (G, [b],{u}) is Hodge-Newton reducible with respect
to a standard parabolic subgroup P with Levi factor L. Choose p € {u} and b €
L(Z,)p(p)L(Z,) with the properties (i), (i) and (iit) of 4.1.4. Then for any admis-

sible Q,-representation p of J(Q,), we have an equality of virtual representations of

G(Qp) x Wg
H*(RZg,), = ]ndgggng.(RZfb)p'

In particular, the virtual representation H '(RZE’; b)p contains no supercuspidal represen-
tations of G(Q,).

4.2. Rigid analytic tower associated to the parabolic subgroup.

For our proof of Theorem 4.1.5, we construct an intermediate tower of rigid analytic
spaces associated to the parabolic subgroup P.

4.2.1. For the rest of this section, we will always keep the assumption and the notations
in the statement of Theorem 4.1.5. In addition, we write X = (X, (¢;)) for the p-divisible
group with G-structure that arises from the datum (G, [b], {u}) with the choice b € [b].

By [Hongl8], Lemma 3.1.4, we can choose a group G of EL type with the following
properties:

(i) the embedding G — GL(A) factors through G,

(ii) the datum (G, [b], {u}) is Hodge-Newton reducible with respect to a proper
parabolic subgroup P of G and its Levi factor L such that P = PN G and
L=LnNG.

In general, the group G is of the form
G = Resg, |z, GLn, X Resg,z,GL,, X ReSﬁf‘ZpGLnf

where each 0 is the ring of integers for some finite unramified extension of Q,,. However,
in light of functorial properties in Proposition 3.2.1, we may assume for simplicity that

G = Resg|z,GLy,

where & is the integer ring of some finite unramified extension of Q,. Then the Levi
subgroup L takes the form

(4.2.1.1) L= Resg|z, GLim, X Resgjz, GLy, X -+ X Resgiz, GLpy, .
For each 7 =1,2,--- | r, we define the following data:

e L; is the j-th factor in the decomposition (4.2.1.1),

L; is the image of L under the projection L — Ej,

b; is the image of b under the projection L —» L,

(t; is the cocharacter of L; induced from p via the projection L — L;.
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4.2.2. For any z € RZ¢ 4(F,), we write (X,, (t,,),t.) for the corresponding tuple under
the moduli description of RZG,;,(E,) described in 3.1.6, and X, := (X, (t;,)) for the
associated p-divisible group with G-structure. Then we have the following facts from
[Hong18], §3.2:

(1) The tuples (L;, [b;], {u;}) and (L;, [b ] {1;}) are unramified local Shimura data
of Hodge type for each j =1,2,-
(2) There is a natural map of the afﬁne Deligne—Lusztig sets
XE () < XEy () — XLy (b)) x - x XEr (b)),
which induces a natural map
RZc(Fp) — RZpy(F,) — RZp, b, (Fp) x -+ x RZp p, (F,)

via the natural bijections between the affine Deligne-Lusztig sets and the set of
[F,-valued points of the Rapoport-Zink spaces (see 3.2.2.).
(3) The second map in (2) induces a decomposition

X:X ><X ><---><X

where X , s the p-divisible group w1th L; structure corresponding to the image
of z in RZij (F,).
(4) If we set X9 = Xy X Xgj oy X oo X X, foreach j =1,2,--- 7, the decompo-
sition in (3) induces a ﬁltratlon

0cxWcecxirVec...cxV=X,
such that each quotient X / XU ~ z; carries Lj-structure that arises from

the datum (L;, [b;], {1;})-

(5) GivenaZ,- algebra of the form R = Zp[[uy, - - - ,un]] or R = Zy[[us, - - ,un]]/(p™)
and a deformation 2", = (%, (t;)) € Defx, ¢(R) with an isomorphism « :
2., Qr EU >~ X, there exists a unique filtration of 2~

Oct%%(r)c%(rfl)cccﬁ(l):%
which lifts the filtration in (4) in the following sense: for each j 1,2,--- 1,
the isomorphism « induces isomorphisms o) : 25 ) Rr IF Xg(cj) and «; :
(29 ) 2.59) @5 F, = X, such that (2.7 /3@@(]*1 (Y >)) € Defy, 1,(R) for
some family of tensors (t7)) on D(2Z,7 ) 2.91Y).
We refer to the decomposition in (3) and the filtration in (4) respectively as the Hodge-
Newton decomposition and the Hodge-Newton filtration of X, (with respect to P and

L). If we take x such that X, = X, (t,;) = (¢;) and ¢, is the identity map on X, we
obtain the Hodge-Newton decomposition of X

(4.2.2.1) X=X, xX,x--xX,
and the corresponding Hodge-Newton filtration of X
(4.2.2.2) 0CcXPWcxtVec...cxW=x

where each quotient X/ XU+ ~ X carries L;-structure that arises from the datum

(L;, [b;], {1;}) with the choice b; € [b;].
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4.2.3. Following Mantovan in [Man08], Definition 9, we define a set-valued functor RZ3 ,
on Nilp; as follows: for any R € Nilp; , we set RZ ﬁ,b(R) to be the set of isomorphism
classes of triples (X', X®, 1) where

e X is a p-divisible group over R with an action of &' (see Example 3.1.8);
e X* is a filtration of p-divisible groups over R

0c X cxtr-bc...cx®=yxy

which is preserved by the action of & such that the quotients X /XU*1 are
p—divisible groups (with the induced action of &);
: Xgryp — Xgyp is a quasi-isogeny which is Compatible with the action of &

and induces quasi-isogenies ¢) : X (J/) — xY) R/p for j=1,2,-

such that for alla € & and j =1,2,--- 7,
NG 1) 0 x ()
det g(a, Lie(X)) = det(a, Fil'(X)y ).

Mantovan in [Man08], Proposition 11 proved that the functor RZz, is represented by
a formal scheme which is formally smooth and locally formally of finite type over Z
We write RZp, also for this representing formal scheme, and RZrlg for its rigid analytic
generic fiber. In addition, we write A, and X respectlvely for the universal filtered
p-divisible group over RZ3, and the assoc1ated umversal filtration”.

Remark. As in [Man08|, Definition 10, we can also define a tower of étale covers

RZE, = {RZ?ﬁ} over RZ;gjb with a natural action of P(Q,) x J,(Q,) and a Weil
— ~

descent datum over E, where K, runs over open and compact subgroups of P(Z,).

4.2.4. By the functoriality of Rapoport-Zink spaces described in Proposition 3.2.1, the
embedding G — G induces a closed embedding

RZG,b — Rzé,b‘
In addition, we have a natural map
%2 : RZﬁ’b — RZ@’b

defined by (X, X*,¢) — (X,.) on the points. We define RZp), := RZz, Xrz; , RZap-
Then we have the following Cartesian diagram:

RZp, RZc

2

R7Z Pb RZg,

Moreover, 75 is a local isomorphism which gives an isomorphism on the rigid analytic
generic fiber since 7y has the same properties (see [Man08], Theorem 36 and [Sh13],
Proposition 6.3.).
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We want to describe the universal property of the closed embedding RZp) — RZp,
in an analogous way to the universal property of RZ¢g;, C RZ;, described in 3.1.5. For
this, we choose a decomposition of A

A=MANDAB---BA,

corresponding to the decomposition of L in (4.2.1.1). We set AD = Ay & --- @ A; for
j=1,2,--- ,r, and denote by A® the filtration

0cAW c...c AW = A
Then for any Z,-algebra R we have
P(R) ={g € G(R) : g(AR) = A%}

Now consider a morphism [ : Spf (R) — RZp, for some R € Nilp; . Let (X, X*) be
a p-divisible group over Spec(R) with a filtration which pulls back to (f*Xp,, [*X b b)
over Spf (R). We denote by D(X*®) the filtration of Dieudonné modules

0=DXx/XxM) cDX/XP)C - cDX/X") CcDWX)

induced by X'* via (contravariant) Dieudonne theory. We choose tensors (;) on D(X)[1/p)]
asin 3.1.5. Then f factors through RZp, if and only if 750 f factors through RZ¢;, —
RZg,, which is equivalent to existence of a (unique) family of tensors (t;) on D(X) such
that

(i) for some ideal of definition J of R containing p, the pull-back of (t;) over R/J
agrees with the pull-back of (#;) over R/J,
(ii) for a p-adic lift R of R which is formally smooth over Z,, the R-scheme

Pr = Tsomy ([D(X)r, (6=, [A° ©, R, (s @ 1)])
defined in 3.1.5 is a G-torsor, and consequently the R-scheme
Pi, 1= Tsomp ([D(X*)r, (6:)z], [(A*)* @z, R, (s @ 1)])

is a P-torsor,
(iii) the Hodge filtration of X" is a {u}-filtration with respect to (t;).

Here the scheme Pj in (ii) classifies the isomorphisms D(X)zr = Aj which map the
tensors (t;) to (s; ® 1) and the filtration D(X*®)r to (A®)* ®z, R.

We obtain the “universal p-divisible group” &X’p;, over RZpy, with the associated “uni-
versal filtration” X7, by taking the pull-back of X3, and X%, over RZp,. We also

obtain a family of “universal tensors” (t"™"") on D(Xp,) by applying the universal
property to an open affine covering of RZp;. Moreover, this family has a “étale real-
ization” (t'5""") on the Tate module T},(Xpp) (see [Kim13], Theorem 7.1.6.).

1,6t
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4.2.5. The formal scheme RZp} is formally smooth and locally formally of finite type
over Z, by construction. Hence it admits a rigid analytic generic fiber which we denote
by RZ%gb. Moreover, since 7 gives an isomorphism on the rigid analytic generic fiber,

we have a J,(Q,)-action and a Weil descent datum over E on RZ}E py induced by the
corresponding structures on RZ“g
For any open compact subgroup K, of P(Z,), we define the following rigid analytic

étale cover of RZrlg

RZP,Z = Isomgzii,gb([A°a(Si)]a[T (A8,), (£"")] )/K/

The J,(Q,)-action and the Weil descent datum over E on RZrlg pull back to RZ%? . We

denote by RZp), := {RZ P,b} the tower of these covers with Galois group P(Zp). The
Galois action on this tower gives rise to a natural P(Q),)-action which commutes with
the J,(Q,)-action and the Weil descent datum over E (cf. [Kim13], Proposition 7.4.8.).
Hence the cohomology groups

H'(RZpy) = H{(RZyp} @, Cpr Qu(dim RZp%))

form a tower {H i(RZg’l’,/)} for each ¢, which are endowed with a natural action of
P(Q,) x Wg x J,(Q,). Moreover, for any admissible [-adic representation p of J,(Q,),
the groups

i 00 : j iR Ky
H"(RZp,), = hﬂEXtﬂb(@p)(H (RZp} ), p)
Ky

satisfy the following properties (cf. 3.3.4):

(1) The groups H*(RZ%,), vanish for almost all , j.
(2) There is a natural action of P(Qp) x Wg on each H"(RZE),),.
(3) The representations H*/(RZ%}), are admissible.

We can thus define a virtual representation of P(Q,) x Wg
H*(RZE,), = Y (-1 HY(RZ,),
i,j>0
Remark. Alternatively, we can obtain the tower RZp), as the pull-back of the tower
RZ%”b over RZ%.
4.3. Harris-Viehmann conjecture: proof.

We finally present our proof of Theorem 4.1.5. We retain all the notations from 4.2.

Lemma 4.3.1. There exists a diagram

RZg,

S
™ 2

RZp, RZ,
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such that

(1) s is a closed immersion,
(2) m is a fibration in balls,
(3) my is an isomorphism.

Proof. For notational simplicity, we assume that r = 2, i.e., the decomposition of L in
(4.2.1.1) has two factors. Our argument will naturally extend to the general case.

Note that we have already constructed o and proved (3) in 4.2.4.

Let us now prove (1). From the decomposition L = Ly x Ly we obtain a natural
isomorphism RZ;, ~ RZ; , X RZz , by Proposition 3.2.1. Consider the map

5: Rzz,b ~ RZzhbl X RZZ2’b2 — RZﬁ’b

where the second arrow is defined by (X7, t1, Xa, t9) — (X1 XX, 0 C Xy C Xy X Xa, 19X 12)
on the points. Then s gives a closed immersion on the rigid analytic generic fibers by
[Man08], Proposition 14. We define s to be the restriction of 5 on RZp ;. Since s also
gives a closed immersion on the rigid analytic generic fibers by construction, it suffices
to show that s factors through the embedding RZp;, — RZp,, which amounts to
proving that 7 o s factors through RZ¢ . In fact, mos is the natural closed embedding
RZ.p — RZg,, which is functorially induced by the embedding L «—— G in the sense
of Proposition 3.2.1. Hence 7, o s factors through RZg, as the embedding L — G
factors through G.

It remains to prove (2). Note that we have a natural embedding

RZp, — RZ;,

which is functorially induced by the embedding L — L in the sense of Proposition
3.2.1. Consider the map

%1 : Rzls,b — RZZLbl X szg,bg = RZEb
defined by (X, X*,1) — (X/X@ /12 X@ 1 2) s (X /XPD)x XP (1/1?) x 1)) on
the points, where 1/t : (X1)r/p = (X/XP)pp — (X/XP)p), is a quasi-isogeny
induced by ¢ and 1. We define 1, be the restriction of 7; on RZ Pb-
We claim that m factor through the embedding RZy, < RZjz ,. It suffices to show
that (locally) the map 7, ' o m; factors through RZ;, — RZg,. We only need to

check this on the set of Fp—points and the completions thereof. On the set of Fp—points,
7, ' o coincides with the map in (2) of 4.2.2 and thus factors through RZp ;. On the

completion (R/Zg\b)x at © € RZx ¢(F,), we get a map

Defx, ¢ — Dewalj1 X DefXij2 ~ Def Def, 7

T

a1 ><Xx2,L1 X Lo -

induced by the association 2, — (%/%(2)) x 2% Note that (ﬂfx/%@)) x 2% is a
deformation of X, via the isomorphism a; x a(? in (5) of 4.2.2. Since this isomorphism

is induced by «, we see that (£ / ,%0(2)) x 2% lifts the tensors that define G-structure
on X,. Hence the image of the above map must lie in Deme 7 NDefx, ¢ = Defx, 1.
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Finally, we easily see that m; is a fibration in balls. In fact, for any point x € RZj, ;(IF,)
the completion of RZp, at s(x) is isomorphic to a formal deformation space of X, with

Tate tensors, which is isomorphic to a formal spectrum of a power series ring over Z,
as proved in [Fal99], §7 (see also [Mo098], §4.). O

Proposition 4.3.2. For any admissible l-adic representation p of J,(Q,), we have
H.(RZz?b)p = H.(R@?b)p

as virtual representations of P(Qp) x Wg.
Proof. For any open compact subgroups K’ C P(Z,), we get morphisms of rigid ana-
lytic spaces

s, RZpy @ s RZEY and g RZpy — RZp MO
which are P(Q,) x J,(Q,)-equivariant and compatible with the Weil descent datum.
Moreover, s Kp/’s are closed immersions and satisfy 7, K, © Sk, = idRZﬁ/mu@p).

Recall that we have a universal p-divisible group Xz, over RZ 5 with the associated
filtration X% ,. By [Man08], Proposition 30, we have a formal scheme RZ%mb) — RZ3,
for each integer m > 0 with the following properties:

(i) a morphism f : Spf (R) — RZp, for some R € Nilpzp factors through RZ(ﬁmb)
if and only if the filtration f*A’3 b[pm] is split,

(ii) the formal schemes RZgnb) and RZz, become isomorphic when considered as
formal schemes over RZj , via the map m :RZp, — RZ;5,.

Taking the pull back of RZgnb) over RZpj, we obtain a formal scheme RZEDW’Z) — RZpy,
for each integer m > 0 with analogous properties. We write RZE&??’rig for the rigid

analytic generic fiber of RZED?.

For each integer m > 0, we set K,'™ := ker (P(Z,) - P(Z,/p™Zy,)) and define two
distinct covers P,,, —> RZ%) and P, — RZ%) by the following Cartesian diagrams:

Prn VAU P, RZy,)"
T
1(m) ri 1(m) .
RZpj, RZp, RZph " —— RZ},

Since 7 is a fibration in balls, we obtain quasi-isomorphisms

RT.(P,, ® C,, Q) = RTJ(RZy5 " ®5 C,Q(~D))[~2D] for all m >0
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where D = dimRZp), — dimRZ;, (see [Berk93], §6). Moreover, we can argue as in
[Man08], Lemma 31 and Proposition 32 to deduce quasi-isomorphisms

RT.(RZ, " ®y, €, Q) & RU(P), ®, C,, Q) for all m > 0.
Thus we have quasi-isomorphisms
Kp’<m) N ~U Kp/(m) —

RFC(RZPJ) Ry, Cp, Q) = RT(RZ}, Ry, C,.Q;(—D))[-2D] for all m > 0,
which yield the desired equality. O
Proposition 4.3.3. For any admissible I-adic representation p of J,(Q,), we have

H*(RZ5,), = Indyg?) H* (RZ3,),
as virtual representations of P(Qp) x Wg.

Proof. For any open compact subgroup K, C G(Z,), we have natural morphisms of
rigid analytic spaces

mo.x, - RZpy ") — RZSE
which are P(Q,) x J,(Q,)-equivariant and compatible with the Weil descent datum.
Moreover, these maps are evidently closed immersions. Hence we have isomorphisms

RZ¢, = RZG, xpges RZFE = [T Rzpy™ @) forall K, € G(Z,),
’ Kp\G(Qp)/P(Qy)
thereby obtaining the desired identity. 0

Proposition 4.3.2 and 4.3.3 together imply Theorem 4.1.5.
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